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Linear dynamical systems described by finite-difference or differential equations are considered. It is assumed that the matrix 
of the system is either completely known or is subject to uncontrollable perturbations, so that each dement is known only to 
within a certain poss~le interval. Outer approximations, by means of ellipsoids, are constructed for the attainability sets of such 
systems. The equations of evolution of the approximating ellipsoids are obtained. An example is presented. © 1997 Elsevier 
Science Ltd. All rights reserved. 

This  p a p e r  continues previous  studies [1-3], which were  concerned  with additive per turbat ions.  The  
present  investigation centres on the m o r e  complicated case of  multiplicative per turbat ions ( the per turba-  
t ions are  mult ipl ied by phase  coordinates) .  

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  F O R  D I S C R E T E  T I M E  S Y S T E M S  

We first consider  a discrete t ime system (mult is tage process)  descr ibed by the l inear finite-difference 
equat ions  

x ( t i+ l )=C( t i ) x ( t i )+  f ( t i ) ,  to < t  I . . . . .  i = 0 ,  1 .... (1.1) 

where  x is the n-w~ctor of  phase  coordinates  of  the system, C is an n x n matr ix  and f is an n-vector .  
T h e  vectors  and matr ices  x(ti), C(ti) , f(t i)  are defined at given discrete  instants o f  t ime ti (i = O, 1 . . . .  ), 
the vec tor  function f(ti) is assumed to be  a given funct ion of  t ime,  and the matr ix  C(ti) contains an 
inde te rmina te  c o m p o n e n t  and  is expressed as 

C( t i )= Co( t i )+ Cl ( t i ) ,  i = 0 ,  1 . . . .  (1.2) 

where  Co(ti) is a given non-s ingular  matr ix  depending  on  t ime,  but  Cl(ti) is unknown----either because  
it is subject  to per turba t ions  or  because  the s tructure of  the system is incompletely  known. It  is assumed 
that  the  e lements  cjk(ti) of  Cl(ti) are  bounded  in absolute  value 

Ic#(ti) l<~bjt(t i) ,  j ,  k = l  . . . . .  n; i = 0 ,  I . . . .  (1.3) 

where  bjk(ti) are given numbers .  
The  initial state of  system (1.1) may  also not be accurately known; all that is known is a set M containing 

it 

x(t  o ) e M ,  M c R n  (1.4) 

The  attainabili ty set D(ti, to, M) of  system (1.1), i />  0, is def ined as the set o f  pointsx(t i )  that  are the 
ends  o f  all phase  t rajectories  x(.) o f  the system admi t ted  by condi t ions (1.2)-(1.4).  

This set possesses the following evolut ion (semigroup)  p rope r ty  [2, 3] 

D(t  i, t o , M ) = D ( t  i, tj ,  D( t j ,  t o , M)),  0 <<-j<<-i (1.5) 
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The attainability set characterizes the possible spread of trajectories of the system under the effect 
of the perturbations or the uncertainty factors. As is well known, the exact construction of attainability 
sets is generally fraught with difficulties. This explains why it is important to have fairly simple and 
effective outer approximations for the set. 

As approximating sets, we shall use ellipsoids, which were used in the previously considered case of 
additively introduced perturbations. In this paper we will consider the more complicated case of multi- 
plicative perturbations, which has been studied before [4] and occurs not infrequently in applications. 

Such applications include mechanical and electrical systems with perturbed or incompletely known stiffness 
coefficients, mechanical or electrical resistance, inductance, capacitance, and so on, as well as linear controllable 
systems with inaccuracies in the realization of the amplification factors. EUipsoidal approximations possess several 
advantages: simplicity, smoothness of the boundary, invariance under linear transformations, and so on [2, 3]. 

Following [1-3], we introduce the notation E(a, Q) for an n-dimensional ellipsoid 

E(a, Q) = {x : ( 0  -1 (x - a), (x - a)) <~ 1} (1.6) 

where a is the n-vector of the centre of the ellipsoid, Q is a symmetric positive definite n x n matrix 
and (.,.) is the scalar product of vectors. Note that as Q ~ 0 the ellipsoid (1.6) shrinks to the point 
x = a .  

The problem of the outer ellipsoid approximation of attainability sets may be formulated as follows. 

Problem 1. It is required to find a vector-valued function a(ti) and a matrix-valued function Q(ti) such 
that 

D(t i, t o , M ) c E ( a ( t i ) ,  Q(ti)), ~' i=0,  1 . . . .  (1.7) 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  F O R  
C O N T I N U O U S  T I M E  S Y S T E M S  

We now consider a linear system of ordinary differential equations with initial condition 

x = C ( t ) x + f ( t ) ,  t ~ s ;  x ( s ) ~ M ,  M c R "  (2.1) 

where x is the n-vector of phase coordinates, the dot denotes differentiation with respect to time t, C 
is an n x n matrix, f is an n-vector and M a given initial set. The functions C(t) and f(t) are such that 
the initial-value problem (2.1) has a solution for any initial vector x(s); it is sufficient to assume that 
these functions are piecewise-continuous for t I> s. In that case the function f(t) is given for t t> s and 
the function C(t) may be expressed as 

C(t) = C O (t) + C I (t) (2.2) 

where the matrix Co(t) is given for t /> s and the matrix Cl(t) is unknown. The elements Cjk(t) of Cl(t) 
satisfy inequalities similar to (1.3) 

Icjk(t)l<~bjk(t), j ,  k = l  . . . . .  n, t>~s (2.3) 

where bjk(t ) are given non-negative functions of time, defined for t /> s. 
The attainability set D(t, s, M) of system (2.1) for t I> s is defined as the set of all pointsx(t) that are 

ends of the phase trajectories x(.) of the system at time t allowed by conditions (2.1)-(2.3). The 
attainability set possesses an evolution property [2, 3] similar to (1.5) 

D(t, s, M)=D( t ,  % D(x, s, M)), x~[s ,  t] (2.4) 

The problem of constructing an outer ellipsoidal approximation to the attainability sets of system 
(2.1)-(2.3) is analogous to Problem 1. 

Problem 2. Find a vector function a(t) and a matrix function Q(t) such that, for all t /> s 
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D(t, s, M) c E(a(t), Q(t)), t >~ s (2.5) 

Problems 1 and 2 obviously have more than one solution: any ellipsoid containing an ellipsoid 
solution is also a :~olution. It is therefore natural to ask whether the solution can be minimized in the 
sense of some optimum criterion characterizing the "size" of the approximating ellipsoids, for example 
their volume, sum of squared semi-axes, or the like. This was the approach adopted previously 
[1-3] for additive perturbations. In this paper the problem of optimizing the approximating ellipsoids 
will not be solved, but in the construction we will use certain optimal operations on ellipsoids 
[1-3]. 

3. T R A N S F O R M A T I O N S  OF E L L I P S O I D S  

Returning to Problem 1, let us assume that the required ellipsoid E(a(ti), Q(ti)) satisfying the inclusion 
(1.7) at time t = t~ has been constructed. By (1.1) and (1.2), we have 

x(ti+l) = x I +x2; x I = Co(t i )x( t i )+f( t i ) ,  x 2 = Cl(ti)x(ti)  (3.1) 

In order to construct an ellipsoid E(a(ti+l), Q(ti+l)) containing the v e c t o r  x ( t i + l )  , it will suffice, 
according to (3.1), to perform the following three operations: 

1. construct an ellipsoid containing the vector xl; 
2. construct an ellipsoid containing the vector x2; 
3. construct an ,ellipsoid containing the vector sum xl + x2, where each vector in the sum is known 

to belong to a certain ellipsoid. 
We will consider each of these operations separately. 
The first operation reduces to an affine transformation of ellipsoids. Suppose that, for some n-vector 

x, it is known that x ~ E(a, Q), where a is the n-vector representing the centre of the ellipsoid and Q 
is a symmetric positive definite n x n matrix; then [1-3] 

A x + b ~ E ( A a + b ,  AQA T ) (3.2) 

where A is an arbitrary non-singular n × n matrix, b is an n-vector and the superscript T denotes 
transposition. By (3.2), we obtain the following inclusion for the vector xi of (3.1) 

x I ¢ E(Co( t i )a( t i )+f( t i ) ,  Co(ti)Q(ti)C~(tD) (3.3) 

The second operation (construction of an ellipsoid containing x2) reduces to solving the following 
auxiliary problem. 

Problem 3. Find an ellipsoid containing the set 

f l = { y : y = C x ,  C¢~, ,  x e E ( a ,  Q)} (3.4) 

where E(a, Q) is a given ellipsoid in n-space, Z is the class of C matrices n x n whose elements cij satisfy 
the inequalities (b,.i are given non-negative numbers) 

Icql~ b O, i, j = l . . . . .  n (3.5) 

An admissible solution of Problem 3 is proposed in the next section. 
Finally, the third operation (addition of ellipsoids) was carried out in [1-3], where the construction 

yielded resultant e]Ilipsoids of optimum volume. A more general optimum criterion was considered in 
[2, 3, 51. 

We will present the results for the case when the resultant ellipsoid is of minimum volume. Recall 
that volume as an optimum criterion has the special property that an ellipsoid of optimum volume is 
invariant under linear transformations: it remains optimal even if subjected to a linear transformation 
together with the initial ellipsoids that contain the vectors Xl and x2. 

Letxi =_ E(ai, ai)  (i = 1, 2), where one of the matrices Q1 or Qz may be singular (for example, let Q1 
be positive definite: and Q2 only positive semidefinite). Then the parameters of the ellipsoid of least 
volume E (a ÷, Q+) containing the sum xl and x2 are determined by the relations 
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a* = a  I + a  2, Q* =(p-I + I ) Q  I + ( p + l ) Q 2  (3.6) 

where  p > 0 is the unique  positive root  of  the equat ion 

" 1 n 
Y ~ = ( 3 . 7 )  j=i P + kj p(p + 1) 

The  numbers  ~ ~> 0 (j = 1 , . . . ,  n) are the roots  of  the characterist ic equat ion 

det (Q1 - XQ2) = 0 (3.8) 

each root  being counted  according to its multiplicity. 
Thus, the construct ion o f  the ellipsoid E(a(ti+l), Q(ti+l)), ,and hence the solution of  Problem 1, will 

be  complete ,  provided we can solve the auxiliary Problem 3. 

4. S O L U T I O N  OF  T H E  A U X I L I A R Y  P R O B L E M  

We note  some proper t ies  o f  the set Q defined by (3.4). T h e  set f~ is star-like relative to the origin, 
though it need  not  be convex; it is symmetric relative to all the coordinate  hyperplanes.  

To prove that the set is star-like, take any point y = Cx of D, corresponding to some matrix C • Z and point x 
• E(a, ~2)- Since the elements cij of  C satisfy inequalities (3.35), it follows that the same is true of the elements 
otcLof the matrix ctC, where ct • [0, 1]. Consequently, the point y = ctCx lies in D, and so fl is star-like. 

Here is an example of a non-convex set t~. Let n = 2 and let the constants b# in the constraints (3.5) be 

bli =b22 = 1, b12 = b21 =0  (4.1) 

In this case, each point x = (xl, x2) of the ellipse E(a, Q) is associated through (3.4), (3.5) and (4.1) with the rectangle 

lyll~lxl I, ly21~lx21 (4.2) 

which is a subset of Q. In fact, the set Q itself is the union of rectangles of the form (4.2), where the point x = (xl, 
x2) runs over the ellipse E(a, Q). In particular, suppose that E(a, Q) is degenerate, that is, a segment P1P2 in the 
xlx 2 plane, where P1 lies in the second and/'2 in the fourth quadrant (Fig. 1). Suppose that the segment P1P2 does 
not pass through the origin. Then the set ~ in theyjy 2 plane is a polygon, not necessarily convex, but symmetrical 
about both coordinate axes. Its boundaries, shown by the thick line in Fig. 1, consist of parts of the boundaries of 
the rectangles (4.2) corresponding to the points P1 and P2, and possibly part of the segment P1P2 itself and its mirror 
images in the coordinate exes. 

P 

/ 
x,, y, 

Fig. 1. 
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We will now prove that ~ is symmetric with respect to all coordinate hyperplanes Yi = 0 (i = 1 . . . .  , n). 
Take any pointy = Cx ~ ~ corresponding to some C ~ ~ andx ¢ E(a, Q). Switching signs in a whole row c# (j = 
1 . . . . .  n) of C, we obtain a matrix C' satisfying conditions (3.5), i.e. ~ ¢ x .  Consequently, the point y = C'x, 
which differs from y only in the sign ofyi, is also an element of ft. This proves the symmetry property of ft. 

Remark 1. Suppose that for some i we have b,. = 0 for allj = 1 . . . . .  n. Then by (3.4) and (3.5) we obtainyi = 
0, i.e. in that ease t)  lies in the hyperplane Yi = ~. This is the case if C has no indeterminacy in certain rows. 

Proceeding  now to the solution o f  Problem 3, we first construct  a rectangular  paral le lepiped 

lYkl~< Yk, k = 1 . . . .  (4.3) 

containing the set t~ of  (3.4). Setting x = a + ~, we obtain, using (3.4) and (3.5) 

lykl~ ckja j + ckj~j <~ bk.la. l+max max I(ck,~)l (4.4) 
j=l :.l 1 Ce~ ~¢E(0.Q) 

where  c k is the  n-vector  with components  Ckj (j = 1 . . . . .  n). To compute  the last maximum in (4.4), we 
define a Lagrange  funct ion 

L = (c k, ~) + ~.fQ-I~, ~) 

and equa te  its gradient  with respect to ~ to zero. This gives 

= - (2X)  -t Qc k (4.5) 

Substituting (4.511 into the condition (Q-I~, ~) = 1, we obtain an equality f rom which we can determine 
~, apar t  f rom the sign 

~, = +(11 2)(Q¢ k, ck) ~ 

Using this expression for  ~, we deduce  from (4.5) that  

= T.fQc k, c Qc  k 

Substi tuting this expression into (c k, ~), we find the required maximum in (4.4) 

max ( ~ c " ~  ~,~.(O,a)l(Ck, ~) l=(Qc k, ck) ~2 = |  E Qpqc~ ~q| 
~,p.q=l .] 

(4.6) 

Now, in accordance  with (4.4), we must  find the maximum of  (4.6) over  C e Y_,, th.at is, over  all c o 
satisfying condit ions (3.5). Since the quadrat ic  form (Qc k, c k) is a convex function of  c k, it follows that 
the maximum is reached  at a vertex o f  the paral lelepiped defined by inequalities (3.5). We have 

¢i: = b:i:, % = +l, i, j = I ..... n (4.7) 

Taking account of (4.4), (4.6) and (4.7), we can write the expression fory~ of (4.3) as 

Y*k = ~ bkylajl+fmax. Y. Q~b~b~a~a~ (4.8) 
j=l k 0 p,q=l 

where  the maximum is considered over  all 6iy = +_1 (j  = 1 , . . . ,  n). 

Remark 2. Formulae (4.8) yield upper bounds for the dimensions of a parallelepiped (4.3) containing f~. These 
bounds need not be optimal (they may be lowered). 

Remark 3. The actual calculation of the maximum in (4.8) requires scanning 2 ~-1 different cases, corresponding 
to the different signs of o~j, where m is the number of non-vanishing elements bij; the exponent is m - 1 because 
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simultaneous change of all signs of oij does not change the sum to be maximized in (4.8), and therefore the sign 
of one of the numbers o/j may be fixed at will. In the general case we have m = n 2, but in many applications the 
perturbations or indeterminacy are in fact present for only some of the element~ of C, and then m is not large. 
But if only one element of C is indeterminate, that is, all the bij s vanish except for one b m > 0, then m = 1 and 
there is no need at all to scan. In that case formula (4.8) is simplified to 

• * 

Yk = b~(lapl+ ), Yi = 0, i ~ k (4.9) 

Le t  us construct  an ellipsoid containing the paraUelepiped (4.3). Since the axes of  the  para l le lepiped 
coincide with the coord ina te  exes, the required  ellipsoid m a y  be  taken as 

~, r~2y 2 ~< 1 (4.10) 
k=l 

T h e  lengths of  the semi-axes rk are  chosen so that  the ell ipsoid (4.10) should contain the para l le lepiped  
(4.3). This leads to the condi t ion 

Y. rk-2(yk) 2 = 1 (4.11) 
k=l 

In  addition, we require  that  when  condit ion (4.11) is satisfied the  vo lume  of  the ellipsoid (4.10) should 
be  a minimum.  Since the vo lume of  an ellipsoid is p ropor t iona l  to the p roduc t  of  the lengths of  its semi- 
axes §., this condit ional  ex t r emum p rob l em is associa ted with the Lagrange  function 

#1 

/-I = kH__l rk + ~-I ~ rk -2 (Y;,)2 
k=l 

Equat ing  the derivatives of  this funct ion with respect  to rk to zero,  we obta in  

/ r2 =~'2(Yk) 2, ~'2 =2~q Irk , k = l ,  ..., n 

Substituting this expression for  r 2 into (4.11), we obta in  3. 2 = n. Hence  

r k = n~y'~, k = I . . . . .  n (4.12) 

This result may  be slightly improved  if for  some  i it is t rue  that  b V = 0 for  all j = 1 . . . . .  n. In 
tha t  case, Remark  1 implies that  for  those values of  i we h a v e y  ,* = 0. Suppose that  the n u m b e r  of  indices 
i such that  bij = 0 for  a l l j  = 1, . . .  , n is v, 1 ~< v < n. In that  case the set f l  lies in an (n - v)-  
dimensional  hyperp lane  and it is reasonable  to app rox ima te  it by an (n - v) -d imensional  ellipsoid in 
the  same hyperplane,  o f  minimal  (n - v) -d imensional  volume.  There fore ,  instead of  (4.12), we 
obta in  

r k = ( n - v ) ~ y "  , ,  k = l  . . . . .  n (4.13) 

These  results may  be s u m m e d  up in a t heo rem that  p resen ts  the solution of  Problem 3. 

Theorem 1. The  set  f l  of  (3.4) is conta ined  in an ellipsoid (4.10) whose  semi-axes rk are  defined by 
(4.13) and (4.8), that  is 

f ~ c E ( 0 ,  R), R=d iag ( r l  2 . . . . .  r 2 )  

4 = ( n - v )  n bkjlail+(max Y. Qpqb*pbkeokP(l~[ 
~, a p,q=l ) 

k = I . . . . .  n (4.14) 

T h e  max imum is t aken  over  all oij = +- 1 (i,j  = 1 . . . . .  n)  such that  b 0 ~ 0, and v is the n u m b e r  of  indices 
i for  each of  which bij = 0 (j = 1 . . . . .  n). 
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Note that although the ellipsoid (4.10) may have semi-axes of zero length and the matf ixR -1 is then 
undefined, the nol~tion E(0, R) remains meaningful and may be used. 

5. A P P R O X I M A T I O N  OF A T T A I N A B I L I T Y  SETS F O R  
D I S C R E T E  T I M E  S Y S T E M S  

Summing up the results of Sections 3 and 4, we can present the solution of  Problem 1. To that end 
we describe the procedure for constructing the functions a(ti), Q(ti) occurring in (1.7). Choose some 
ellipsoid E(ao, Qo) containing the initial set M (for example, an ellipsoid of least volume), so that M C 
E(ao, Qo), and put 

a(to) =,io,  Q(to) = Qo (5.1) 

The vector a(ti+l) and the matrix Q(ti+l) are expressed in terms of  the quantities a(ti) , Q(ti) (i = O, 
1,. . .)  using recurrent relations that follow from (3.6), (3.3) and (4.14). In the notation of (3.6), we 
deduce from (3.3) and (4.14) that 

a + = a I = Co(ti)a(ti)+ f(ti), a 2 = 0 

and so 

a(ti+l ) = C O (ti)a(ti) + f ( t  i) (5.2) 

Similarly, we deduce from (3.6), (3.3) and (4.14) that 

Q(ti+l ) = (p- t  + 1)Qi + ( p  + 1)Q2 ' (5.3) 

Q, = Co ( t, )Q( ti ( t, ), = R 

The diagonal matrix R is defined by (4.14) after the substitution 

a=a( t i ) ,  Q(ti), byk=b/k(ti)  (5.4) 

The scalar parameterp in (5.3) is determined from formulae (3.7) and (3.8), as described at the end 
of  Section 3. 

We state the result obtained as follows. 

Theorem 2. The recurrent procedure for constructing the parameters of the ellipsoids E(a(ti), Q(ti)), 
i = 0, 1 . . . . .  as de, termined by (5.1)-(5.4) and formulae (4.14), (3.7) and (3.8), yields a solution of 
Problem 1. 

Remark 4. By the r{~urrent nature of the construction, the approximating ellipsoids obtained here possess the 
property of super-attainability [2, 3], which is analogous to the evolution property (1.5) of attainability sets 

E(a(t  i), Q(t i)) ~ D(ti,t/, E(a(t/) ,  Q(tj))), 0 ~< j ~< i (5.5) 

6. A P P R O X I M A T I O N  OF A T T A I N A B I L I T Y  SETS 
F O R  C O N T I N U O U S  T I M E  S Y S T E M S  

A continuous time system (2.1) may be treated as a limiting case of a discrete time system (1.1). The 
simplest finite-difference approximation of system (2.1), (2.2) may be written as 

x( t+  A) = x~ + x 2 (6.1) 

x I = [I + ACo(t)]x(t) + Af(t), x 2 = AC l (t)x(t) 

where A is a sufficiently small time step and I is the n x n identity matrix. 
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Relations (6.1) are analogou~ to (3.1), and therefore equalities (5.2) and (5.3) can be used, with the 
obvious changes in notation. By (5.2), we have 

a(t + A) = [ I + AC 0 (t)]a(t) + Af( t )  

Dividing this equality by A and letting A --> 0, we obtain a differential equation for a(t) 

a" = Co(t)a + f(t) (6.2) 

Comparing (6.1) and (3.1), we obtain, by (5.3) 

Q(t + A) = (p-1 + l)Ql + (p + I)Q2 (6.3) 

Q~ = [I + ACo(t)]Q(t)[l + AC0r(t)], 122 = R 

The matrix R is defined by (4.14). The roles of the vector a and the matrix Q in (4.14) are now played 
by the parameters of the ellipsoid E(a(t), Q(t)) for the vector x(t), and the roles of the elements bij by 
the corresponding bounds Abij(t ) for the absolute values of the elements of the matrix ACI(t) by which 
x(t) is multiplied in (6.1). Thus, we deduce from (4.14) that the matrix R may be written as 

R = A2G (t) (6.4) 

The matrix G is given by the previous formula (4.14) for R, that is 

G=diag (n-v)~ b,,lajl+ max t,~=Q~b~,bkqO~,oht) ] I  (6.5) 

in which we must set a = a(t), Q = Q(t), b r = bij(t ) ( i , j  = 1 . . . .  , n). Here, as in (4.8) and (4.14), the 
maximum is taken over all t~ij = --.1 for whlch bij > 0 ( i , j  = 1 , . . . ,  n), and v is the number of indices 
k for each of which bk~ = 0 for all j  = 1 , . . . ,  n. 

In view of (6.3) and (6.4), the characteristic equation (3.8) may be written as 

det[Q(t) + Q(A) - A2~G(t)] = 0 (6.6) 

The roots ~ of the characteristic equation (6.6) as A ---> 0 will be sought in the form 

kj = A-2(~I.j )-i + .... j = l  . . . . .  n (6.7) 

where ~ are new unknowns and the dots denote quantities of higher order of smallness in A. Substituting 
(6.7) into (6.6) we obtain after reduction an equation for gj 

det[Q -l ( t )G( t ) -  p.jl] = 0 (6.8) 

Since Q is positive definite and G is positive semidefinite, this equation has n non-negative roots gj, 
counting each root in accordance with its multiplicity. 

We will seek the unique positive root of Eq. (3.7) in the form 

p = A-tq -I +... (6.9) 

Substituting (6.7) and (6.9) into Eq. (3.7), expanding both sides in powers of A and comparing coefficients 
of A 2, we obtain 

q = n IXj (6.10) 
~,j=l 

The sum of the roots of  the characteristic equation (6.8) is equal to the trace of the matrix Q-1G. 
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Consequently, it foUows from (6.10) that 

q = {n-l[Tr(Q-IG)]}~2 
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(6.11) 

We substitute formulae (6.4) and (6.9) into (6.3) for Q(t  + A) and transform, dropping terms of order 
A 2 and higher. Dividing the resulting equality by A and letting A ---> 0, we obtain 

Q" = Co(t)Q + QCr  ( t )+ qQ + q-IG (6.12) 

Equations (6.2) and (6.12), together with formulae (6.5) for G and (6.11) for q, constitute a system 
of  differential equations of order  n + n(n  + 1)/2 for the vector a(t) and the symmetric positive definite 
matrix Q(t).  To obtain initial conditions, as in Section 5, we construct an ellipsoid E(ao, Qo) containing 
the initial set M of (2.1) (E(ao, (20) D M) ,  and set 

a(s)  = a o, Q(s) = Q.o 

We sum up the results as a theorem presenting the solution of Problem 2. 

(6.13) 

Theorem 3. The ,ellipsoid E(a(t) ,  Q(t))  whose parameters a(t) and Q(t) are the solution of the initial- 
value problem for the system of  differential equations (6.2) and (6.12), taking into consideration that 
(6.5) holds for G and (6.11) for q, with initial conditions (6.13), satisfies the inclusion (2.5) for t I> s. 

Remark 5. The lim:ar system (6.2) for the vector a(t) may be integrated independently of the non-linear system 
(6.12) for the matrix Q(t). The latter system, however, depends on (6.2), since its fight-hand sides involve the vector 
a(t) (see (6.5)). 

Remark 6. The approximating ellipsoids we have constructed possess a super-attainability property [2, 3] similar 
to (5.5) 

E(a(t);  Q(t))  ~ D(t, x, E(a(x),  Q(x)))), 0 ~< x ~ t 

This property, which :is analogous to the evolution property (2.4) for attainability sets, follows from the construction 
procedure itself: the ellipsoids are constructed at any subsequent time on the basis of the ellipsoids at the preceding 
times. 

Remark 7. The non..linear system (6.12) for Q is similar to the analogous system for the case of additively occurring 
perturbations [1-3]. "]?he difference lies in expression (6.5) for the matrix G which, as already pointed out, depends 
on the vector a and involves maximization over o# = ± 1. 

Remark 8. The m~aimum operation over o# in (6.5) is simplified considerably if the number m of actually 
indeterminate parameters cii is small, and particularly ifm = 1, when one has just one perturbed (indeterminate) 
element c~, of the matrix C. In that case, as in the case of (4.9), we deduce from (6.5) (necessarily putting 
v = n - l )  

2 ~ 2 (6.14) G=diag(0 . . . . .  G k .. . . .  0), G k =b~(lapl+Qpp) 

Remark q. The outer ellipsoidal approximations we have constructed for attainability sets are not optimal, but 
at some points in the argument (formulae (3.6)-(3.8) and (4.14)) we have used procedures that are optimal in the 
sense of the volume of the approximating ellipsoids. Instead of these procedures, one can use other relationships, 
such as optimal procedures in the sense of the sum of squares of the semi-axes, but then the invariance property 
would be lost. 

7. E X A M P L E  

Consider the two-dimensional system (n = 2) 

x i =x 2, x2 = - x  t +C(t)xl, Ic(t)l<~b (7.1) 

where c(t) is an undetined bounded perturbation and b is a positive constant. If c(t) is a periodic function, system 
(7.1) describes parametric excitation of oscillations. In the case of system (7.1), there is only one non-zero element 
c21 of the matrix C and formula (6.14) is applicable with k = 2, p = 1. We have 
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Co=lO 1 :[' G=I: b2(lallO+Qi~12)21 (7.2) 

System (6.2) becomes 

a i = a  2, a2 =-a I (7.3) 

and describes harmonic oscillations. 
We compute q from (6.11) and from system (6.12), taking (7.2) into consideration 

Qil =2Q12 +qQll,  Qi2 = Ql| -Q22 +qQI2 (7.4) 

Q22 = -2QI2 + qQ22 + q-I b 2 ( lal l+Q~)2 

2 1 

Suppose that the initial set M at time t = 0 is a disk of radius e in the x~x2 plane with centre at the origin. Then 

al(O)=a2(O)=O, Qll(O)=Q22(O)=e 2, Ql2(0)=0 (7.5) 

System (7.3) with initial conditions (7.5) has a trivial solution, and system (7.4) then becomes 

Qii =2Q12 +bQ?! D-I, Qi2 =Q22 -Qll +bQIIQI2 D-I (7.6) 

Q22 =-2Q12 + bQllQ22 D-I + bD 
The right-hand sides of system (7.6) are homogeneous functions of Qq: the system is invariant under the 

transformation Q# ---> ~.Qij with parameter L Therefore, we may assume without loss of generality that e = 1 in 
(7.5). The results of a numerical solution of the initial-value problem (7.6), (7.5) with b = 0.8 are shown in Fig. 2. 

1/2 To interpret these results, we recall that the support function of the ellipse E(0, Q(t)) is p(z) = (Qz, z) , and therefore 
the quantities Q ~ ,  Q~t2 may be interpreted as the projections of the ellipse E(0, Q(t)) on to the x 1 and x2 
axes, respectively. Hence the following estimates hold for all solutions of the initial system (7.1) with the initial 
conditions (7.5) 

Ixj(t)l<~[Qii(t)] ~, i=l, 2 

The outer approximations obtained in this paper for attainability sets may be useful when one is estimating the 
influence of perturbations affecting the matrix of the system. 

This research was carr ied out  with financial suppor t  f rom the Russian Foundat ion  for  Basic Research  
(96-01-01137). 
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